SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Meschia James) ;pers:(Hansen Björn);pers:(Valant Valerie)"

Search: WFRF:(Meschia James) > Hansen Björn > Valant Valerie

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Anderson, Christopher D., et al. (author)
  • Common Variants Within Oxidative Phosphorylation Genes Influence Risk of Ischemic Stroke and Intracerebral Hemorrhage
  • 2013
  • In: Stroke: a journal of cerebral circulation. - 1524-4628. ; 44:3, s. 612-619
  • Journal article (peer-reviewed)abstract
    • Background and Purpose-Previous studies demonstrated association between mitochondrial DNA variants and ischemic stroke (IS). We investigated whether variants within a larger set of oxidative phosphorylation (OXPHOS) genes encoded by both autosomal and mitochondrial DNA were associated with risk of IS and, based on our results, extended our investigation to intracerebral hemorrhage (ICH). Methods-This association study used a discovery cohort of 1643 individuals, a validation cohort of 2432 individuals for IS, and an extension cohort of 1476 individuals for ICH. Gene-set enrichment analysis was performed on all structural OXPHOS genes, as well as genes contributing to individual respiratory complexes. Gene-sets passing gene-set enrichment analysis were tested by constructing genetic scores using common variants residing within each gene. Associations between each variant and IS that emerged in the discovery cohort were examined in validation and extension cohorts. Results-IS was associated with genetic risk scores in OXPHOS as a whole (odds ratio [OR], 1.17; P=0.008) and complex I (OR, 1.06; P=0.050). Among IS subtypes, small vessel stroke showed association with OXPHOS (OR, 1.16; P=0.007), complex I (OR, 1.13; P=0.027), and complex IV (OR, 1.14; P=0.018). To further explore this small vessel association, we extended our analysis to ICH, revealing association between deep hemispheric ICH and complex IV (OR, 1.08; P=0.008). Conclusions-This pathway analysis demonstrates association between common genetic variants within OXPHOS genes and stroke. The associations for small vessel stroke and deep ICH suggest that genetic variation in OXPHOS influences small vessel pathobiology. Further studies are needed to identify culprit genetic variants and assess their functional consequences. (Stroke. 2013;44:612-619.)
  •  
2.
  • Devan, William J., et al. (author)
  • Heritability Estimates Identify a Substantial Genetic Contribution to Risk and Outcome of Intracerebral Hemorrhage
  • 2013
  • In: Stroke: a journal of cerebral circulation. - 1524-4628. ; 44:6, s. 1578-1583
  • Journal article (peer-reviewed)abstract
    • Background and Purpose-Previous studies suggest that genetic variation plays a substantial role in occurrence and evolution of intracerebral hemorrhage (ICH). Genetic contribution to disease can be determined by calculating heritability using family-based data, but such an approach is impractical for ICH because of lack of large pedigree-based studies. However, a novel analytic tool based on genome-wide data allows heritability estimation from unrelated subjects. We sought to apply this method to provide heritability estimates for ICH risk, severity, and outcome. Methods-We analyzed genome-wide genotype data for 791 ICH cases and 876 controls, and determined heritability as the proportion of variation in phenotype attributable to captured genetic variants. Contribution to heritability was separately estimated for the APOE (encoding apolipoprotein E) gene, an established genetic risk factor, and for the rest of the genome. Analyzed phenotypes included ICH risk, admission hematoma volume, and 90-day mortality. Results-ICH risk heritability was estimated at 29% (SE, 11%) for non-APOE loci and at 15% (SE, 10%) for APOE. Heritability for 90-day ICH mortality was 41% for non-APOE loci and 10% (SE, 9%) for APOE. Genetic influence on hematoma volume was also substantial: admission volume heritability was estimated at 60% (SE, 70%) for non-APOE loci and at 12% (SE, 4%) for APOE. Conclusions-Genetic variation plays a substantial role in ICH risk, outcome, and hematoma volume. Previously reported risk variants account for only a portion of inherited genetic influence on ICH pathophysiology, pointing to additional loci yet to be identified.
  •  
3.
  • Woo, Daniel, et al. (author)
  • Meta-Analysis of Genome-Wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage.
  • 2014
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:4, s. 511-521
  • Journal article (peer-reviewed)abstract
    • Intracerebral hemorrhage (ICH) is the stroke subtype with the worst prognosis and has no established acute treatment. ICH is classified as lobar or nonlobar based on the location of ruptured blood vessels within the brain. These different locations also signal different underlying vascular pathologies. Heritability estimates indicate a substantial genetic contribution to risk of ICH in both locations. We report a genome-wide association study of this condition that meta-analyzed data from six studies that enrolled individuals of European ancestry. Case subjects were ascertained by neurologists blinded to genotype data and classified as lobar or nonlobar based on brain computed tomography. ICH-free control subjects were sampled from ambulatory clinics or random digit dialing. Replication of signals identified in the discovery cohort with p < 1 × 10(-6) was pursued in an independent multiethnic sample utilizing both direct and genome-wide genotyping. The discovery phase included a case cohort of 1,545 individuals (664 lobar and 881 nonlobar cases) and a control cohort of 1,481 individuals and identified two susceptibility loci: for lobar ICH, chromosomal region 12q21.1 (rs11179580, odds ratio [OR] = 1.56, p = 7.0 × 10(-8)); and for nonlobar ICH, chromosomal region 1q22 (rs2984613, OR = 1.44, p = 1.6 × 10(-8)). The replication included a case cohort of 1,681 individuals (484 lobar and 1,194 nonlobar cases) and a control cohort of 2,261 individuals and corroborated the association for 1q22 (p = 6.5 × 10(-4); meta-analysis p = 2.2 × 10(-10)) but not for 12q21.1 (p = 0.55; meta-analysis p = 2.6 × 10(-5)). These results demonstrate biological heterogeneity across ICH subtypes and highlight the importance of ascertaining ICH cases accordingly.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view